
Docker Documentation
Release 0

Team Docker

January 22, 2016

Contents

1 Concepts 3
1.1 Introduction . 3
1.2 Building blocks . 6

2 Installation 7
2.1 Ubuntu Linux . 7
2.2 Binaries . 8
2.3 Arch Linux . 8
2.4 Using Vagrant . 9
2.5 Windows (with Vagrant) . 10
2.6 Amazon EC2 . 12
2.7 Upgrading . 14

3 Examples 15
3.1 Running The Examples . 15
3.2 Hello World . 15
3.3 Hello World Daemon . 16
3.4 Building a python web app . 17
3.5 Create a redis service . 18
3.6 Create an ssh daemon service . 19

4 Contributing 21
4.1 Contributing to Docker . 21
4.2 Setting up a dev environment . 22

5 Commands 23
5.1 The basics . 23
5.2 Working with the repository . 24
5.3 Command Line Interface . 25

6 Builder 31
6.1 Docker Builder . 31

7 FAQ 35
7.1 Most frequently asked questions. 35

i

ii

Docker Documentation, Release 0

This documentation has the following resources:

Contents 1

Docker Documentation, Release 0

2 Contents

CHAPTER 1

Concepts

Contents:

1.1 Introduction

1.1.1 Docker - The Linux container runtime

Docker complements LXC with a high-level API which operates at the process level. It runs unix processes with
strong guarantees of isolation and repeatability across servers.

Docker is a great building block for automating distributed systems: large-scale web deployments, database clusters,
continuous deployment systems, private PaaS, service-oriented architectures, etc.

• Heterogeneous payloads Any combination of binaries, libraries, configuration files, scripts, virtualenvs, jars,
gems, tarballs, you name it. No more juggling between domain-specific tools. Docker can deploy and run them
all.

• Any server Docker can run on any x64 machine with a modern linux kernel - whether it’s a laptop, a bare metal
server or a VM. This makes it perfect for multi-cloud deployments.

• Isolation docker isolates processes from each other and from the underlying host, using lightweight containers.

• Repeatability Because containers are isolated in their own filesystem, they behave the same regardless of where,
when, and alongside what they run.

1.1.2 What is a Standard Container?

Docker defines a unit of software delivery called a Standard Container. The goal of a Standard Container is to en-
capsulate a software component and all its dependencies in a format that is self-describing and portable, so that any
compliant runtime can run it without extra dependency, regardless of the underlying machine and the contents of the
container.

The spec for Standard Containers is currently work in progress, but it is very straightforward. It mostly defines 1) an
image format, 2) a set of standard operations, and 3) an execution environment.

A great analogy for this is the shipping container. Just like Standard Containers are a fundamental unit of software
delivery, shipping containers (http://bricks.argz.com/ins/7823-1/12) are a fundamental unit of physical delivery.

3

http://bricks.argz.com/ins/7823-1/12

Docker Documentation, Release 0

Standard operations

Just like shipping containers, Standard Containers define a set of STANDARD OPERATIONS. Shipping containers
can be lifted, stacked, locked, loaded, unloaded and labelled. Similarly, standard containers can be started, stopped,
copied, snapshotted, downloaded, uploaded and tagged.

Content-agnostic

Just like shipping containers, Standard Containers are CONTENT-AGNOSTIC: all standard operations have the same
effect regardless of the contents. A shipping container will be stacked in exactly the same way whether it contains
Vietnamese powder coffee or spare Maserati parts. Similarly, Standard Containers are started or uploaded in the same
way whether they contain a postgres database, a php application with its dependencies and application server, or Java
build artifacts.

Infrastructure-agnostic

Both types of containers are INFRASTRUCTURE-AGNOSTIC: they can be transported to thousands of facilities
around the world, and manipulated by a wide variety of equipment. A shipping container can be packed in a factory
in Ukraine, transported by truck to the nearest routing center, stacked onto a train, loaded into a German boat by an
Australian-built crane, stored in a warehouse at a US facility, etc. Similarly, a standard container can be bundled on
my laptop, uploaded to S3, downloaded, run and snapshotted by a build server at Equinix in Virginia, uploaded to 10
staging servers in a home-made Openstack cluster, then sent to 30 production instances across 3 EC2 regions.

Designed for automation

Because they offer the same standard operations regardless of content and infrastructure, Standard Containers, just
like their physical counterpart, are extremely well-suited for automation. In fact, you could say automation is their
secret weapon.

Many things that once required time-consuming and error-prone human effort can now be programmed. Before ship-
ping containers, a bag of powder coffee was hauled, dragged, dropped, rolled and stacked by 10 different people in
10 different locations by the time it reached its destination. 1 out of 50 disappeared. 1 out of 20 was damaged. The
process was slow, inefficient and cost a fortune - and was entirely different depending on the facility and the type of
goods.

Similarly, before Standard Containers, by the time a software component ran in production, it had been individually
built, configured, bundled, documented, patched, vendored, templated, tweaked and instrumented by 10 different
people on 10 different computers. Builds failed, libraries conflicted, mirrors crashed, post-it notes were lost, logs were
misplaced, cluster updates were half-broken. The process was slow, inefficient and cost a fortune - and was entirely
different depending on the language and infrastructure provider.

Industrial-grade delivery

There are 17 million shipping containers in existence, packed with every physical good imaginable. Every single one
of them can be loaded on the same boats, by the same cranes, in the same facilities, and sent anywhere in the World
with incredible efficiency. It is embarrassing to think that a 30 ton shipment of coffee can safely travel half-way across
the World in less time than it takes a software team to deliver its code from one datacenter to another sitting 10 miles
away.

With Standard Containers we can put an end to that embarrassment, by making INDUSTRIAL-GRADE DELIVERY
of software a reality.

4 Chapter 1. Concepts

Docker Documentation, Release 0

Standard Container Specification

(TODO)

Image format

Standard operations

• Copy

• Run

• Stop

• Wait

• Commit

• Attach standard streams

• List filesystem changes

• ...

1.1. Introduction 5

Docker Documentation, Release 0

Execution environment

Root filesystem

Environment variables

Process arguments

Networking

Process namespacing

Resource limits

Process monitoring

Logging

Signals

Pseudo-terminal allocation

Security

1.2 Building blocks

1.2.1 Images

An original container image. These are stored on disk and are comparable with what you normally expect from a
stopped virtual machine image. Images are stored (and retrieved from) repository

Images are stored on your local file system under /var/lib/docker/images

1.2.2 Containers

A container is a local version of an image. It can be running or stopped, The equivalent would be a virtual machine
instance.

Containers are stored on your local file system under /var/lib/docker/containers

6 Chapter 1. Concepts

CHAPTER 2

Installation

Contents:

2.1 Ubuntu Linux

Please note this project is currently under heavy development. It should not be used in production.

Right now, the officially supported distributions are:

• Ubuntu 12.04 (precise LTS) (64-bit)

• Ubuntu 12.10 (quantal) (64-bit)

2.1.1 Dependencies

The linux-image-extra package is only needed on standard Ubuntu EC2 AMIs in order to install the aufs kernel module.

sudo apt-get install linux-image-extra-`uname -r`

2.1.2 Installation

Docker is available as a Ubuntu PPA (Personal Package Archive), hosted on launchpad which makes installing Docker
on Ubuntu very easy.

Add the custom package sources to your apt sources list. Copy and paste the following lines at once.

sudo sh -c "echo 'deb http://ppa.launchpad.net/dotcloud/lxc-docker/ubuntu precise main' >> /etc/apt/sources.list"

Update your sources. You will see a warning that GPG signatures cannot be verified.

sudo apt-get update

Now install it, you will see another warning that the package cannot be authenticated. Confirm install.

sudo apt-get install lxc-docker

Verify it worked

docker

Done!, now continue with the Hello World example.

7

https://launchpad.net/~dotcloud/+archive/lxc-docker

Docker Documentation, Release 0

2.2 Binaries

Please note this project is currently under heavy development. It should not be used in production.

Right now, the officially supported distributions are:

• Ubuntu 12.04 (precise LTS) (64-bit)

• Ubuntu 12.10 (quantal) (64-bit)

2.2.1 Install dependencies:

sudo apt-get install lxc bsdtar
sudo apt-get install linux-image-extra-`uname -r`

The linux-image-extra package is needed on standard Ubuntu EC2 AMIs in order to install the aufs kernel module.

Install the docker binary:

wget http://get.docker.io/builds/Linux/x86_64/docker-master.tgz
tar -xf docker-master.tgz
sudo cp ./docker-master /usr/local/bin

Note: docker currently only supports 64-bit Linux hosts.

2.2.2 Run the docker daemon

sudo docker -d &

2.2.3 Run your first container!

docker run -i -t ubuntu /bin/bash

Continue with the Hello World example.

2.3 Arch Linux

Please note this is a community contributed installation path. The only ‘official’ installation is using the
Ubuntu Linux installation path. This version may sometimes be out of date.

Installing on Arch Linux is not officially supported but can be handled via either of the following AUR packages:

• lxc-docker

• lxc-docker-git

The lxc-docker package will install the latest tagged version of docker. The lxc-docker-git package will build from the
current master branch.

8 Chapter 2. Installation

https://aur.archlinux.org/packages/lxc-docker/
https://aur.archlinux.org/packages/lxc-docker-git/

Docker Documentation, Release 0

2.3.1 Dependencies

Docker depends on several packages which are specified as dependencies in either AUR package.

• aufs3

• bridge-utils

• go

• iproute2

• linux-aufs_friendly

• lxc

2.3.2 Installation

The instructions here assume yaourt is installed. See Arch User Repository for information on building and installing
packages from the AUR if you have not done so before.

Keep in mind that if linux-aufs_friendly is not already installed that a new kernel will be compiled and this can take
quite a while.

yaourt -S lxc-docker-git

2.3.3 Starting Docker

Prior to starting docker modify your bootloader to use the linux-aufs_friendly kernel and reboot your system.

There is a systemd service unit created for docker. To start the docker service:

sudo systemctl start docker

To start on system boot:

sudo systemctl enable docker

2.4 Using Vagrant

Please note this is a community contributed installation path. The only ‘official’ installation is using the
Ubuntu Linux installation path. This version may sometimes be out of date.

Requirements: This guide will setup a new virtual machine with docker installed on your computer. This works on
most operating systems, including MacOX, Windows, Linux, FreeBSD and others. If you can install these and have
at least 400Mb RAM to spare you should be good.

2.4.1 Install Vagrant and Virtualbox

1. Install virtualbox from https://www.virtualbox.org/ (or use your package manager)

2. Install vagrant from http://www.vagrantup.com/ (or use your package manager)

3. Install git if you had not installed it before, check if it is installed by running git in a terminal window

2.4. Using Vagrant 9

https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_packages
https://www.virtualbox.org/
http://www.vagrantup.com/

Docker Documentation, Release 0

2.4.2 Spin it up

1. Fetch the docker sources (this includes the Vagrantfile for machine setup).

git clone https://github.com/dotcloud/docker.git

2. Run vagrant from the sources directory

vagrant up

Vagrant will:

• Download the ‘official’ Precise64 base ubuntu virtual machine image from vagrantup.com

• Boot this image in virtualbox

• Add the Docker PPA sources to /etc/apt/sources.lst

• Update your sources

• Install lxc-docker

You now have a Ubuntu Virtual Machine running with docker pre-installed.

2.4.3 Connect

To access the VM and use Docker, Run vagrant ssh from the same directory as where you ran vagrant up.
Vagrant will connect you to the correct VM.

vagrant ssh

2.4.4 Run

Now you are in the VM, run docker

docker

Continue with the Hello World example.

2.5 Windows (with Vagrant)

Please note this is a community contributed installation path. The only ‘official’ installation is using the
Ubuntu Linux installation path. This version may be out of date because it depends on some binaries to
be updated and published

2.5.1 Requirements

1. Install virtualbox from https://www.virtualbox.org - or follow this tutorial

2. Install vagrant from http://www.vagrantup.com - or follow this tutorial

3. Install git with ssh from http://git-scm.com/downloads - or follow this tutorial

We recommend having at least 2Gb of free disk space and 2Gb of RAM (or more).

10 Chapter 2. Installation

https://launchpad.net/~dotcloud/+archive/lxc-docker
https://www.virtualbox.org
http://www.slideshare.net/julienbarbier42/install-virtualbox-on-windows-7
http://www.vagrantup.com
http://www.slideshare.net/julienbarbier42/install-vagrant-on-windows-7
http://git-scm.com/downloads
http://www.slideshare.net/julienbarbier42/install-git-with-ssh-on-windows-7

Docker Documentation, Release 0

2.5.2 Opening a command prompt

First open a cmd prompt. Press Windows key and then press “R” key. This will open the RUN dialog box for you.
Type “cmd” and press Enter. Or you can click on Start, type “cmd” in the “Search programs and files” field, and click
on cmd.exe.

This should open a cmd prompt window.

Alternatively, you can also use a Cygwin terminal, or Git Bash (or any other command line program you are usually
using). The next steps would be the same.

2.5.3 Launch an Ubuntu virtual server

Let’s download and run an Ubuntu image with docker binaries already installed.

git clone https://github.com/dotcloud/docker.git
cd docker
vagrant up

Congratulations! You are running an Ubuntu server with docker installed on it. You do not see it though, because it is
running in the background.

2.5.4 Log onto your Ubuntu server

Let’s log into your Ubuntu server now. To do so you have two choices:

• Use Vagrant on Windows command prompt OR

• Use SSH

Using Vagrant on Windows Command Prompt

Run the following command

vagrant ssh

You may see an error message starting with “ssh executable not found”. In this case it means that you do not have
SSH in your PATH. If you do not have SSH in your PATH you can set it up with the “set” command. For instance, if
your ssh.exe is in the folder named “C:Program Files (x86)Gitbin”, then you can run the following command:

set PATH=%PATH%;C:\Program Files (x86)\Git\bin

Using SSH

First step is to get the IP and port of your Ubuntu server. Simply run:

vagrant ssh-config

2.5. Windows (with Vagrant) 11

Docker Documentation, Release 0

You should see an output with HostName and Port information. In this example, HostName is 127.0.0.1 and port is
2222. And the User is “vagrant”. The password is not shown, but it is also “vagrant”.

You can now use this information for connecting via SSH to your server. To do so you can:

• Use putty.exe OR

• Use SSH from a terminal

Use putty.exe

You can download putty.exe from this page http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
Launch putty.exe and simply enter the information you got from last step.

Open, and enter user = vagrant and password = vagrant.

SSH from a terminal

You can also run this command on your favorite terminal (windows prompt, cygwin, git-bash, . . .). Make sure to adapt
the IP and port from what you got from the vagrant ssh-config command.

ssh vagrant@127.0.0.1 -p 2222

Enter user = vagrant and password = vagrant.

Congratulations, you are now logged onto your Ubuntu Server, running on top of your Windows machine !

2.5.5 Running Docker

First you have to be root in order to run docker. Simply run the following command:

sudo su

You are now ready for the docker’s “hello world” example. Run

docker run busybox echo hello world

All done!

Now you can continue with the Hello World example.

2.6 Amazon EC2

Please note this is a community contributed installation path. The only ‘official’ installation is using the
Ubuntu Linux installation path. This version may sometimes be out of date.

12 Chapter 2. Installation

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Docker Documentation, Release 0

2.6.1 Installation

Docker can now be installed on Amazon EC2 with a single vagrant command. Vagrant 1.1 or higher is required.

1. Install vagrant from http://www.vagrantup.com/ (or use your package manager)

2. Install the vagrant aws plugin

vagrant plugin install vagrant-aws

3. Get the docker sources, this will give you the latest Vagrantfile.

git clone https://github.com/dotcloud/docker.git

4. Check your AWS environment.

Create a keypair specifically for EC2, give it a name and save it to your disk. I usually store these in my ~/.ssh/
folder.

Check that your default security group has an inbound rule to accept SSH (port 22) connections.

5. Inform Vagrant of your settings

Vagrant will read your access credentials from your environment, so we need to set them there first. Make sure
you have everything on amazon aws setup so you can (manually) deploy a new image to EC2.

export AWS_ACCESS_KEY_ID=xxx
export AWS_SECRET_ACCESS_KEY=xxx
export AWS_KEYPAIR_NAME=xxx
export AWS_SSH_PRIVKEY=xxx

The environment variables are:

• AWS_ACCESS_KEY_ID - The API key used to make requests to AWS

• AWS_SECRET_ACCESS_KEY - The secret key to make AWS API requests

• AWS_KEYPAIR_NAME - The name of the keypair used for this EC2 instance

• AWS_SSH_PRIVKEY - The path to the private key for the named keypair, for example
~/.ssh/docker.pem

You can check if they are set correctly by doing something like

echo $AWS_ACCESS_KEY_ID

6. Do the magic!

vagrant up --provider=aws

If it stalls indefinitely on [default] Waiting for SSH to become available..., Double
check your default security zone on AWS includes rights to SSH (port 22) to your container.

If you have an advanced AWS setup, you might want to have a look at the https://github.com/mitchellh/vagrant-
aws

7. Connect to your machine

vagrant ssh

8. Your first command

Now you are in the VM, run docker

2.6. Amazon EC2 13

http://www.vagrantup.com/
https://github.com/mitchellh/vagrant-aws
https://github.com/mitchellh/vagrant-aws

Docker Documentation, Release 0

docker

Continue with the Hello World example.

2.7 Upgrading

These instructions are for upgrading your Docker binary for when you had a custom (non package manager) installa-
tion. If you istalled docker using apt-get, use that to upgrade.

Get the latest docker binary:

wget http://get.docker.io/builds/$(uname -s)/$(uname -m)/docker-master.tgz

Unpack it to your current dir

tar -xf docker-master.tgz

Stop your current daemon. How you stop your daemon depends on how you started it.

• If you started the daemon manually (sudo docker -d), you can just kill the process: killall docker

• If the process was started using upstart (the ubuntu startup daemon), you may need to use that to stop it

Start docker in daemon mode (-d) and disconnect (&) starting ./docker will start the version in your current dir rather
than the one in your PATH.

Now start the daemon

sudo ./docker -d &

Alternatively you can replace the docker binary in /usr/local/bin

14 Chapter 2. Installation

CHAPTER 3

Examples

Contents:

3.1 Running The Examples

All the examples assume your machine is running the docker daemon. To run the docker daemon in the background,
simply type:

sudo docker -d &

Now you can run docker in client mode: all commands will be forwarded to the docker daemon, so the client can run
from any account.

now you can run docker commands from any account.
docker help

3.2 Hello World

Note: This example assumes you have Docker running in daemon mode. For more information please see Running
The Examples

This is the most basic example available for using Docker.

Download the base container

Download a base image
docker pull base

The base image is a minimal ubuntu based container, alternatively you can select busybox, a bare minimal linux
system. The images are retrieved from the docker repository.

#run a simple echo command, that will echo hello world back to the console over standard out.
docker run base /bin/echo hello world

Explanation:

• “docker run” run a command in a new container

• “base” is the image we want to run the command inside of.

• “/bin/echo” is the command we want to run in the container

15

Docker Documentation, Release 0

• “hello world” is the input for the echo command

Video:

See the example in action

Continue to the Hello World Daemon example.

3.3 Hello World Daemon

Note: This example assumes you have Docker running in daemon mode. For more information please see Running
The Examples

The most boring daemon ever written.

This example assumes you have Docker installed and with the base image already imported docker pull base.
We will use the base image to run a simple hello world daemon that will just print hello world to standard out every
second. It will continue to do this until we stop it.

Steps:

CONTAINER_ID=$(docker run -d base /bin/sh -c "while true; do echo hello world; sleep 1; done")

We are going to run a simple hello world daemon in a new container made from the base image.

• “docker run -d “ run a command in a new container. We pass “-d” so it runs as a daemon.

• “base” is the image we want to run the command inside of.

• “/bin/sh -c” is the command we want to run in the container

• “while true; do echo hello world; sleep 1; done” is the mini script we want to run, that will just print hello
world once a second until we stop it.

• $CONTAINER_ID the output of the run command will return a container id, we can use in future commands
to see what is going on with this process.

docker logs $CONTAINER_ID

Check the logs make sure it is working correctly.

• “docker logs” This will return the logs for a container

• $CONTAINER_ID The Id of the container we want the logs for.

docker attach $CONTAINER_ID

Attach to the container to see the results in realtime.

• “docker attach” This will allow us to attach to a background process to see what is going on.

• $CONTAINER_ID The Id of the container we want to attach too.

docker ps

Check the process list to make sure it is running.

• “docker ps” this shows all running process managed by docker

docker stop $CONTAINER_ID

Stop the container, since we don’t need it anymore.

16 Chapter 3. Examples

Docker Documentation, Release 0

• “docker stop” This stops a container

• $CONTAINER_ID The Id of the container we want to stop.

docker ps

Make sure it is really stopped.

Video:

See the example in action

Continue to the Building a python web app example.

3.4 Building a python web app

Note: This example assumes you have Docker running in daemon mode. For more information please see Running
The Examples

The goal of this example is to show you how you can author your own docker images using a parent image, making
changes to it, and then saving the results as a new image. We will do that by making a simple hello flask web
application image.

Steps:

docker pull shykes/pybuilder

We are downloading the “shykes/pybuilder” docker image

URL=http://github.com/shykes/helloflask/archive/master.tar.gz

We set a URL variable that points to a tarball of a simple helloflask web app

BUILD_JOB=$(docker run -d -t shykes/pybuilder:latest /usr/local/bin/buildapp $URL)

Inside of the “shykes/pybuilder” image there is a command called buildapp, we are running that command and passing
the $URL variable from step 2 to it, and running the whole thing inside of a new container. BUILD_JOB will be set
with the new container_id.

docker attach $BUILD_JOB
[...]

We attach to the new container to see what is going on. Ctrl-C to disconnect

BUILD_IMG=$(docker commit $BUILD_JOB _/builds/github.com/hykes/helloflask/master)

Save the changed we just made in the container to a new image called “_/builds/github.com/hykes/helloflask/master”
and save the image id in the BUILD_IMG variable name.

WEB_WORKER=$(docker run -d -p 5000 $BUILD_IMG /usr/local/bin/runapp)

• “docker run -d “ run a command in a new container. We pass “-d” so it runs as a daemon.

• “-p 5000” the web app is going to listen on this port, so it must be mapped from the container to the host system.

• “$BUILD_IMG” is the image we want to run the command inside of.

• /usr/local/bin/runapp is the command which starts the web app.

3.4. Building a python web app 17

Docker Documentation, Release 0

Use the new image we just created and create a new container with network port 5000, and return the container id and
store in the WEB_WORKER variable.

docker logs $WEB_WORKER

* Running on http://0.0.0.0:5000/

view the logs for the new container using the WEB_WORKER variable, and if everything worked as planned you
should see the line “Running on http://0.0.0.0:5000/” in the log output.

WEB_PORT=$(docker port $WEB_WORKER 5000)

lookup the public-facing port which is NAT-ed store the private port used by the container and store it inside of the
WEB_PORT variable.

curl http://`hostname`:$WEB_PORT
Hello world!

access the web app using curl. If everything worked as planned you should see the line “Hello world!” inside of your
console.

Video:

See the example in action

Continue to Create an ssh daemon service.

3.5 Create a redis service

Note: This example assumes you have Docker running in daemon mode. For more information please see Running
The Examples

Very simple, no frills, redis service.

3.5.1 Open a docker container

docker run -i -t base /bin/bash

3.5.2 Building your image

Update your docker container, install the redis server. Once installed, exit out of docker.

apt-get update
apt-get install redis-server
exit

3.5.3 Snapshot the installation

docker ps -a # grab the container id (this will be the last one in the list)
docker commit <container_id> <your username>/redis

18 Chapter 3. Examples

http://0.0.0.0:5000/

Docker Documentation, Release 0

3.5.4 Run the service

Running the service with -d runs the container in detached mode, leaving the container running in the background.
Use your snapshot.

docker run -d -p 6379 <your username>/redis /usr/bin/redis-server

Test 1

Connect to the container with the redis-cli.

docker ps # grab the new container id
docker inspect <container_id> # grab the ipaddress of the container
redis-cli -h <ipaddress> -p 6379
redis 10.0.3.32:6379> set docker awesome
OK
redis 10.0.3.32:6379> get docker
"awesome"
redis 10.0.3.32:6379> exit

Test 2

Connect to the host os with the redis-cli.

docker ps # grab the new container id
docker port <container_id> 6379 # grab the external port
ifconfig # grab the host ip address
redis-cli -h <host ipaddress> -p <external port>
redis 192.168.0.1:49153> set docker awesome
OK
redis 192.168.0.1:49153> get docker
"awesome"
redis 192.168.0.1:49153> exit

3.6 Create an ssh daemon service

Note: This example assumes you have Docker running in daemon mode. For more information please see Running
The Examples

Video:

I’ve create a little screencast to show how to create a sshd service and connect to it. It is something like 11 minutes
and not entirely smooth, but gives you a good idea.

You can also get this sshd container by using

docker pull dhrp/sshd

The password is ‘screencast’

3.6. Create an ssh daemon service 19

Docker Documentation, Release 0

20 Chapter 3. Examples

CHAPTER 4

Contributing

4.1 Contributing to Docker

Want to hack on Docker? Awesome! There are instructions to get you started on the website:
http://docker.io/gettingstarted.html

They are probably not perfect, please let us know if anything feels wrong or incomplete.

4.1.1 Contribution guidelines

Pull requests are always welcome

We are always thrilled to receive pull requests, and do our best to process them as fast as possible. Not sure if that
typo is worth a pull request? Do it! We will appreciate it.

If your pull request is not accepted on the first try, don’t be discouraged! If there’s a problem with the implementation,
hopefully you received feedback on what to improve.

We’re trying very hard to keep Docker lean and focused. We don’t want it to do everything for everybody. This means
that we might decide against incorporating a new feature. However, there might be a way to implement that feature on
top of docker.

Discuss your design on the mailing list

We recommend discussing your plans on the mailing list before starting to code - especially for more ambitious
contributions. This gives other contributors a chance to point you in the right direction, give feedback on your design,
and maybe point out if someone else is working on the same thing.

Create issues...

Any significant improvement should be documented as a github issue before anybody starts working on it.

...but check for existing issues first!

Please take a moment to check that an issue doesn’t already exist documenting your bug report or improvement
proposal. If it does, it never hurts to add a quick “+1” or “I have this problem too”. This will help prioritize the most
common problems and requests.

21

http://docker.io/gettingstarted.html
https://groups.google.com/forum/?fromgroups#!forum/docker-club
https://github.com/dotcloud/docker/issues

Docker Documentation, Release 0

Conventions

Fork the repo and make changes on your fork in a feature branch:

• If it’s a bugfix branch, name it XXX-something where XXX is the number of the issue

• If it’s a feature branch, create an enhancement issue to announce your intentions, and name it XXX-something
where XXX is the number of the issue.

Submit unit tests for your changes. Go has a great test framework built in; use it! Take a look at existing tests for
inspiration. Run the full test suite on your branch before submitting a pull request.

Make sure you include relevant updates or additions to documentation when creating or modifying features.

Write clean code. Universally formatted code promotes ease of writing, reading, and maintenance. Always run go
fmt before committing your changes. Most editors have plugins that do this automatically, and there’s also a git
pre-commit hook:

curl -o .git/hooks/pre-commit https://raw.github.com/edsrzf/gofmt-git-hook/master/fmt-check && chmod +x .git/hooks/pre-commit

Pull requests descriptions should be as clear as possible and include a reference to all the issues that they address.

Code review comments may be added to your pull request. Discuss, then make the suggested modifications and push
additional commits to your feature branch. Be sure to post a comment after pushing. The new commits will show up
in the pull request automatically, but the reviewers will not be notified unless you comment.

Before the pull request is merged, make sure that you squash your commits into logical units of work using git
rebase -i and git push -f. After every commit the test suite should be passing. Include documentation
changes in the same commit so that a revert would remove all traces of the feature or fix.

Commits that fix or close an issue should include a reference like Closes #XXX or Fixes #XXX, which will
automatically close the issue when merged.

Add your name to the AUTHORS file, but make sure the list is sorted and your name and email address match your git
configuration. The AUTHORS file is regenerated occasionally from the git commit history, so a mismatch may result
in your changes being overwritten.

4.2 Setting up a dev environment

Instructions that have been verified to work on Ubuntu 12.10,

sudo apt-get -y install lxc wget bsdtar curl golang git

export GOPATH=~/go/
export PATH=$GOPATH/bin:$PATH

mkdir -p $GOPATH/src/github.com/dotcloud
cd $GOPATH/src/github.com/dotcloud
git clone git@github.com:dotcloud/docker.git
cd docker

go get -v github.com/dotcloud/docker/...
go install -v github.com/dotcloud/docker/...

Then run the docker daemon,

sudo $GOPATH/bin/docker -d

Run the go install command (above) to recompile docker.

22 Chapter 4. Contributing

CHAPTER 5

Commands

Contents:

5.1 The basics

5.1.1 Starting Docker

If you have used one of the quick install paths’, Docker may have been installed with upstart, Ubuntu’s system for
starting processes at boot time. You should be able to run docker help and get output.

If you get docker: command not found or something like /var/lib/docker/repositories:
permission denied you will need to specify the path to it and manually start it.

Run docker in daemon mode
sudo <path to>/docker -d &

5.1.2 Running an interactive shell

Download a base image
docker pull base

Run an interactive shell in the base image,
allocate a tty, attach stdin and stdout
docker run -i -t base /bin/bash

5.1.3 Starting a long-running worker process

Start a very useful long-running process
JOB=$(docker run -d base /bin/sh -c "while true; do echo Hello world; sleep 1; done")

Collect the output of the job so far
docker logs $JOB

Kill the job
docker kill $JOB

23

Docker Documentation, Release 0

5.1.4 Listing all running containers

docker ps

5.1.5 Expose a service on a TCP port

Expose port 4444 of this container, and tell netcat to listen on it
JOB=$(docker run -d -p 4444 base /bin/nc -l -p 4444)

Which public port is NATed to my container?
PORT=$(docker port $JOB 4444)

Connect to the public port via the host's public address
Please note that because of how routing works connecting to localhost or 127.0.0.1 $PORT will not work.
IP=$(ifconfig eth0 | perl -n -e 'if (m/inet addr:([\d\.]+)/g) { print $1 }')
echo hello world | nc $IP $PORT

Verify that the network connection worked
echo "Daemon received: $(docker logs $JOB)"

5.1.6 Committing (saving) an image

Save your containers state to a container image, so the state can be re-used.

When you commit your container only the differences between the image the container was created from and the
current state of the container will be stored (as a diff). See which images you already have using docker images

Commit your container to a new named image
docker commit <container_id> <some_name>

List your containers
docker images

You now have a image state from which you can create new instances.

Read more about Working with the repository or continue to the complete Command Line Interface

5.2 Working with the repository

5.2.1 Connecting to the repository

You create a user on the central docker repository by running

docker login

If your username does not exist it will prompt you to also enter a password and your e-mail address. It will then
automatically log you in.

5.2.2 Committing a container to a named image

In order to commit to the repository it is required to have committed your container to an image with your namespace.

24 Chapter 5. Commands

Docker Documentation, Release 0

for example docker commit $CONTAINER_ID dhrp/kickassapp
docker commit <container_id> <your username>/<some_name>

5.2.3 Pushing a container to the repository

In order to push an image to the repository you need to have committed your container to a named image (see above)

Now you can commit this image to the repository

for example docker push dhrp/kickassapp
docker push <image-name>

5.3 Command Line Interface

5.3.1 Docker Usage

To list available commands, either run docker with no parameters or execute docker help:

$ docker
Usage: docker COMMAND [arg...]

A self-sufficient runtime for linux containers.

...

5.3.2 Available Commands

attach – Attach to a running container

Usage: docker attach CONTAINER

Attach to a running container

build – Build a container from Dockerfile via stdin

Usage: docker build -
Example: cat Dockerfile | docker build -
Build a new image from the Dockerfile passed via stdin

commit – Create a new image from a container’s changes

Usage: docker commit [OPTIONS] CONTAINER [REPOSITORY [TAG]]

Create a new image from a container's changes

-m="": Commit message

5.3. Command Line Interface 25

Docker Documentation, Release 0

diff – Inspect changes on a container’s filesystem

Usage: docker diff CONTAINER [OPTIONS]

Inspect changes on a container's filesystem

export – Stream the contents of a container as a tar archive

Usage: docker export CONTAINER

Export the contents of a filesystem as a tar archive

history – Show the history of an image

Usage: docker history [OPTIONS] IMAGE

Show the history of an image

images – List images

Usage: docker images [OPTIONS] [NAME]

List images

-a=false: show all images
-q=false: only show numeric IDs

import – Create a new filesystem image from the contents of a tarball

Usage: docker import [OPTIONS] URL|- [REPOSITORY [TAG]]

Create a new filesystem image from the contents of a tarball

info – Display system-wide information

Usage: docker info

Display system-wide information.

inspect – Return low-level information on a container

Usage: docker inspect [OPTIONS] CONTAINER

Return low-level information on a container

26 Chapter 5. Commands

Docker Documentation, Release 0

kill – Kill a running container

Usage: docker kill [OPTIONS] CONTAINER [CONTAINER...]

Kill a running container

login – Register or Login to the docker registry server

Usage: docker login

Register or Login to the docker registry server

logs – Fetch the logs of a container

Usage: docker logs [OPTIONS] CONTAINER

Fetch the logs of a container

port – Lookup the public-facing port which is NAT-ed to PRIVATE_PORT

Usage: docker port [OPTIONS] CONTAINER PRIVATE_PORT

Lookup the public-facing port which is NAT-ed to PRIVATE_PORT

ps – List containers

Usage: docker ps [OPTIONS]

List containers

-a=false: Show all containers. Only running containers are shown by default.
-notrunc=false: Don't truncate output
-q=false: Only display numeric IDs

pull – Pull an image or a repository from the docker registry server

Usage: docker pull NAME

Pull an image or a repository from the registry

push – Push an image or a repository to the docker registry server

Usage: docker push NAME

Push an image or a repository to the registry

5.3. Command Line Interface 27

Docker Documentation, Release 0

restart – Restart a running container

Usage: docker restart [OPTIONS] NAME

Restart a running container

rm – Remove a container

Usage: docker rm [OPTIONS] CONTAINER

Remove a container

rmi – Remove an image

Usage: docker rmimage [OPTIONS] IMAGE

Remove an image

run – Run a command in a new container

Usage: docker run [OPTIONS] IMAGE COMMAND [ARG...]

Run a command in a new container

-a=map[]: Attach to stdin, stdout or stderr.
-d=false: Detached mode: leave the container running in the background
-e=[]: Set environment variables
-h="": Container host name
-i=false: Keep stdin open even if not attached
-m=0: Memory limit (in bytes)
-p=[]: Map a network port to the container
-t=false: Allocate a pseudo-tty
-u="": Username or UID

start – Start a stopped container

Usage: docker start [OPTIONS] NAME

Start a stopped container

stop – Stop a running container

Usage: docker stop [OPTIONS] NAME

Stop a running container

tag – Tag an image into a repository

28 Chapter 5. Commands

Docker Documentation, Release 0

Usage: docker tag [OPTIONS] IMAGE REPOSITORY [TAG]

Tag an image into a repository

-f=false: Force

version – Show the docker version information

wait – Block until a container stops, then print its exit code

Usage: docker wait [OPTIONS] NAME

Block until a container stops, then print its exit code.

5.3. Command Line Interface 29

Docker Documentation, Release 0

30 Chapter 5. Commands

CHAPTER 6

Builder

Contents:

6.1 Docker Builder

Table of Contents

• Docker Builder
– 1. Format
– 2. Instructions

* 2.1 FROM
* 2.2 RUN
* 2.3 INSERT

– 3. Dockerfile Examples

6.1.1 1. Format

The Docker builder format is quite simple:

instruction arguments

The first instruction must be FROM

All instruction are to be placed in a file named Dockerfile

In order to place comments within a Dockerfile, simply prefix the line with “#“

6.1.2 2. Instructions

Docker builder comes with a set of instructions:

1. FROM: Set from what image to build

2. RUN: Execute a command

3. INSERT: Insert a remote file (http) into the image

31

Docker Documentation, Release 0

2.1 FROM

FROM <image>

The FROM instruction must be the first one in order for Builder to know from where to run commands.

FROM can also be used in order to build multiple images within a single Dockerfile

2.2 RUN

RUN <command>

The RUN instruction is the main one, it allows you to execute any commands on the FROM image and to save the
results. You can use as many RUN as you want within a Dockerfile, the commands will be executed on the result of
the previous command.

2.3 INSERT

INSERT <file url> <path>

The INSERT instruction will download the file at the given url and place it within the image at the given path.

Note: The path must include the file name.

6.1.3 3. Dockerfile Examples

Nginx
#
VERSION 0.0.1
DOCKER-VERSION 0.2

from ubuntu

make sure the package repository is up to date
run echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/sources.list
run apt-get update

run apt-get install -y inotify-tools nginx apache openssh-server
insert https://raw.github.com/creack/docker-vps/master/nginx-wrapper.sh /usr/sbin/nginx-wrapper

Firefox over VNC
#
VERSION 0.3
DOCKER-VERSION 0.2

from ubuntu
make sure the package repository is up to date
run echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/sources.list
run apt-get update

Install vnc, xvfb in order to create a 'fake' display and firefox
run apt-get install -y x11vnc xvfb firefox
run mkdir /.vnc
Setup a password
run x11vnc -storepasswd 1234 ~/.vnc/passwd

32 Chapter 6. Builder

Docker Documentation, Release 0

Autostart firefox (might not be the best way to do it, but it does the trick)
run bash -c 'echo "firefox" >> /.bashrc'

6.1. Docker Builder 33

Docker Documentation, Release 0

34 Chapter 6. Builder

CHAPTER 7

FAQ

7.1 Most frequently asked questions.

1. How much does Docker cost?

Docker is 100% free, it is open source, so you can use it without paying.

2. What open source license are you using?

We are using the Apache License Version 2.0, see it here: https://github.com/dotcloud/docker/blob/master/LICENSE

3. Does Docker run on Mac OS X or Windows?

Not at this time, Docker currently only runs on Linux, but you can use VirtualBox to run Docker in a virtual
machine on your box, and get the best of both worlds. Check out the MacOSX and Windows intallation guides.

4. How do containers compare to virtual machines?

They are complementary. VMs are best used to allocate chunks of hardware resources. Containers operate at
the process level, which makes them very lightweight and perfect as a unit of software delivery.

5. Can I help by adding some questions and answers?

Definitely! You can fork the repo and edit the documentation sources.

42. Where can I find more answers?

You can find more answers on:

• IRC: docker on freenode

• Github

• Ask questions on Stackoverflow

• Join the conversation on Twitter

Looking for something else to read? Checkout the Hello World example.

35

https://github.com/dotcloud/docker/blob/master/LICENSE
http://www.github.com/dotcloud/docker
http://www.github.com/dotcloud/docker
http://stackoverflow.com/search?q=docker
http://twitter.com/getdocker

	Concepts
	Introduction
	Building blocks

	Installation
	Ubuntu Linux
	Binaries
	Arch Linux
	Using Vagrant
	Windows (with Vagrant)
	Amazon EC2
	Upgrading

	Examples
	Running The Examples
	Hello World
	Hello World Daemon
	Building a python web app
	Create a redis service
	Create an ssh daemon service

	Contributing
	Contributing to Docker
	Setting up a dev environment

	Commands
	The basics
	Working with the repository
	Command Line Interface

	Builder
	Docker Builder

	FAQ
	Most frequently asked questions.

