

 Navigation

 	
 index

 	
 next |

 	Docker 0 documentation

Documentation

This documentation has the following resources:

	Concepts

	Installation

	Examples

	Contributing

	Commands

	Builder

	FAQ

[image: http://www.docker.io/_static/lego_docker.jpg]

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

Concepts

Contents:

	Introduction

	Building blocks

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Concepts

Introduction

Docker - The Linux container runtime

Docker complements LXC with a high-level API which operates at the process level. It runs unix processes with strong guarantees of isolation and repeatability across servers.

Docker is a great building block for automating distributed systems: large-scale web deployments, database clusters, continuous deployment systems, private PaaS, service-oriented architectures, etc.

	Heterogeneous payloads Any combination of binaries, libraries, configuration files, scripts, virtualenvs, jars, gems, tarballs, you name it. No more juggling between domain-specific tools. Docker can deploy and run them all.

	Any server Docker can run on any x64 machine with a modern linux kernel - whether it’s a laptop, a bare metal server or a VM. This makes it perfect for multi-cloud deployments.

	Isolation docker isolates processes from each other and from the underlying host, using lightweight containers.

	Repeatability Because containers are isolated in their own filesystem, they behave the same regardless of where, when, and alongside what they run.

[image: http://www.docker.io/_static/lego_docker.jpg]

What is a Standard Container?

Docker defines a unit of software delivery called a Standard Container. The goal of a Standard Container is to encapsulate a software component and all its dependencies in
a format that is self-describing and portable, so that any compliant runtime can run it without extra dependency, regardless of the underlying machine and the contents of the container.

The spec for Standard Containers is currently work in progress, but it is very straightforward. It mostly defines 1) an image format, 2) a set of standard operations, and 3) an execution environment.

A great analogy for this is the shipping container. Just like Standard Containers are a fundamental unit of software delivery, shipping containers (http://bricks.argz.com/ins/7823-1/12) are a fundamental unit of physical delivery.

Standard operations

Just like shipping containers, Standard Containers define a set of STANDARD OPERATIONS. Shipping containers can be lifted, stacked, locked, loaded, unloaded and labelled. Similarly, standard containers can be started, stopped, copied, snapshotted, downloaded, uploaded and tagged.

Content-agnostic

Just like shipping containers, Standard Containers are CONTENT-AGNOSTIC: all standard operations have the same effect regardless of the contents. A shipping container will be stacked in exactly the same way whether it contains Vietnamese powder coffee or spare Maserati parts. Similarly, Standard Containers are started or uploaded in the same way whether they contain a postgres database, a php application with its dependencies and application server, or Java build artifacts.

Infrastructure-agnostic

Both types of containers are INFRASTRUCTURE-AGNOSTIC: they can be transported to thousands of facilities around the world, and manipulated by a wide variety of equipment. A shipping container can be packed in a factory in Ukraine, transported by truck to the nearest routing center, stacked onto a train, loaded into a German boat by an Australian-built crane, stored in a warehouse at a US facility, etc. Similarly, a standard container can be bundled on my laptop, uploaded to S3, downloaded, run and snapshotted by a build server at Equinix in Virginia, uploaded to 10 staging servers in a home-made Openstack cluster, then sent to 30 production instances across 3 EC2 regions.

Designed for automation

Because they offer the same standard operations regardless of content and infrastructure, Standard Containers, just like their physical counterpart, are extremely well-suited for automation. In fact, you could say automation is their secret weapon.

Many things that once required time-consuming and error-prone human effort can now be programmed. Before shipping containers, a bag of powder coffee was hauled, dragged, dropped, rolled and stacked by 10 different people in 10 different locations by the time it reached its destination. 1 out of 50 disappeared. 1 out of 20 was damaged. The process was slow, inefficient and cost a fortune - and was entirely different depending on the facility and the type of goods.

Similarly, before Standard Containers, by the time a software component ran in production, it had been individually built, configured, bundled, documented, patched, vendored, templated, tweaked and instrumented by 10 different people on 10 different computers. Builds failed, libraries conflicted, mirrors crashed, post-it notes were lost, logs were misplaced, cluster updates were half-broken. The process was slow, inefficient and cost a fortune - and was entirely different depending on the language and infrastructure provider.

Industrial-grade delivery

There are 17 million shipping containers in existence, packed with every physical good imaginable. Every single one of them can be loaded on the same boats, by the same cranes, in the same facilities, and sent anywhere in the World with incredible efficiency. It is embarrassing to think that a 30 ton shipment of coffee can safely travel half-way across the World in less time than it takes a software team to deliver its code from one datacenter to another sitting 10 miles away.

With Standard Containers we can put an end to that embarrassment, by making INDUSTRIAL-GRADE DELIVERY of software a reality.

Standard Container Specification

(TODO)

Image format

Standard operations

	Copy

	Run

	Stop

	Wait

	Commit

	Attach standard streams

	List filesystem changes

	...

Execution environment

Root filesystem

Environment variables

Process arguments

Networking

Process namespacing

Resource limits

Process monitoring

Logging

Signals

Pseudo-terminal allocation

Security

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Concepts

Building blocks

Images

An original container image. These are stored on disk and are comparable with what you normally expect from a stopped virtual machine image. Images are stored (and retrieved from) repository

Images are stored on your local file system under /var/lib/docker/images

Containers

A container is a local version of an image. It can be running or stopped, The equivalent would be a virtual machine instance.

Containers are stored on your local file system under /var/lib/docker/containers

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

Installation

Contents:

	Ubuntu Linux

	Binaries

	Arch Linux

	Using Vagrant

	Windows (with Vagrant)

	Amazon EC2

	Upgrading

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Installation

Ubuntu Linux

Please note this project is currently under heavy development. It should not be used in production.

Right now, the officially supported distributions are:

	Ubuntu 12.04 (precise LTS) (64-bit)

	Ubuntu 12.10 (quantal) (64-bit)

Dependencies

The linux-image-extra package is only needed on standard Ubuntu EC2 AMIs in order to install the aufs kernel module.

sudo apt-get install linux-image-extra-`uname -r`

Installation

Docker is available as a Ubuntu PPA (Personal Package Archive),
hosted on launchpad [https://launchpad.net/~dotcloud/+archive/lxc-docker]
which makes installing Docker on Ubuntu very easy.

Add the custom package sources to your apt sources list. Copy and paste the following lines at once.

sudo sh -c "echo 'deb http://ppa.launchpad.net/dotcloud/lxc-docker/ubuntu precise main' >> /etc/apt/sources.list"

Update your sources. You will see a warning that GPG signatures cannot be verified.

sudo apt-get update

Now install it, you will see another warning that the package cannot be authenticated. Confirm install.

sudo apt-get install lxc-docker

Verify it worked

docker

Done!, now continue with the Hello World example.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Installation

Binaries

Please note this project is currently under heavy development. It should not be used in production.

Right now, the officially supported distributions are:

	Ubuntu 12.04 (precise LTS) (64-bit)

	Ubuntu 12.10 (quantal) (64-bit)

Install dependencies:

sudo apt-get install lxc bsdtar
sudo apt-get install linux-image-extra-`uname -r`

The linux-image-extra package is needed on standard Ubuntu EC2 AMIs in order to install the aufs kernel module.

Install the docker binary:

wget http://get.docker.io/builds/Linux/x86_64/docker-master.tgz
tar -xf docker-master.tgz
sudo cp ./docker-master /usr/local/bin

Note: docker currently only supports 64-bit Linux hosts.

Run the docker daemon

sudo docker -d &

Run your first container!

docker run -i -t ubuntu /bin/bash

Continue with the Hello World example.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Installation

Arch Linux

Please note this is a community contributed installation path. The only ‘official’ installation is using the
Ubuntu Linux installation path. This version may sometimes be out of date.

Installing on Arch Linux is not officially supported but can be handled via
either of the following AUR packages:

	lxc-docker [https://aur.archlinux.org/packages/lxc-docker/]

	lxc-docker-git [https://aur.archlinux.org/packages/lxc-docker-git/]

The lxc-docker package will install the latest tagged version of docker.
The lxc-docker-git package will build from the current master branch.

Dependencies

Docker depends on several packages which are specified as dependencies in
either AUR package.

	aufs3

	bridge-utils

	go

	iproute2

	linux-aufs_friendly

	lxc

Installation

The instructions here assume yaourt is installed. See
Arch User Repository [https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_packages]
for information on building and installing packages from the AUR if you have not
done so before.

Keep in mind that if linux-aufs_friendly is not already installed that a
new kernel will be compiled and this can take quite a while.

yaourt -S lxc-docker-git

Starting Docker

Prior to starting docker modify your bootloader to use the
linux-aufs_friendly kernel and reboot your system.

There is a systemd service unit created for docker. To start the docker service:

sudo systemctl start docker

To start on system boot:

sudo systemctl enable docker

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Installation

Using Vagrant

Please note this is a community contributed installation path. The only ‘official’ installation is using the
Ubuntu Linux installation path. This version may sometimes be out of date.

Requirements:
This guide will setup a new virtual machine with docker installed on your computer. This works on most operating
systems, including MacOX, Windows, Linux, FreeBSD and others. If you can install these and have at least 400Mb RAM
to spare you should be good.

Install Vagrant and Virtualbox

	Install virtualbox from https://www.virtualbox.org/ (or use your package manager)

	Install vagrant from http://www.vagrantup.com/ (or use your package manager)

	Install git if you had not installed it before, check if it is installed by running
git in a terminal window

Spin it up

	Fetch the docker sources (this includes the Vagrantfile for machine setup).

git clone https://github.com/dotcloud/docker.git

	Run vagrant from the sources directory

vagrant up

Vagrant will:

	Download the ‘official’ Precise64 base ubuntu virtual machine image from vagrantup.com

	Boot this image in virtualbox

	Add the Docker PPA sources [https://launchpad.net/~dotcloud/+archive/lxc-docker] to /etc/apt/sources.lst

	Update your sources

	Install lxc-docker

You now have a Ubuntu Virtual Machine running with docker pre-installed.

Connect

To access the VM and use Docker, Run vagrant ssh from the same directory as where you ran
vagrant up. Vagrant will connect you to the correct VM.

vagrant ssh

Run

Now you are in the VM, run docker

docker

Continue with the Hello World example.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Installation

Windows (with Vagrant)

Please note this is a community contributed installation path. The only ‘official’ installation is using the Ubuntu Linux installation path. This version
may be out of date because it depends on some binaries to be updated and published

Requirements

	Install virtualbox from https://www.virtualbox.org - or follow this tutorial [http://www.slideshare.net/julienbarbier42/install-virtualbox-on-windows-7]

	Install vagrant from http://www.vagrantup.com - or follow this tutorial [http://www.slideshare.net/julienbarbier42/install-vagrant-on-windows-7]

	Install git with ssh from http://git-scm.com/downloads - or follow this tutorial [http://www.slideshare.net/julienbarbier42/install-git-with-ssh-on-windows-7]

We recommend having at least 2Gb of free disk space and 2Gb of RAM (or more).

Opening a command prompt

First open a cmd prompt. Press Windows key and then press “R” key. This will open the RUN dialog box for you. Type “cmd” and press Enter. Or you can click on Start, type “cmd” in the “Search programs and files” field, and click on cmd.exe.

[image: Git install]
This should open a cmd prompt window.

[image: run docker]
Alternatively, you can also use a Cygwin terminal, or Git Bash (or any other command line program you are usually using). The next steps would be the same.

Launch an Ubuntu virtual server

Let’s download and run an Ubuntu image with docker binaries already installed.

git clone https://github.com/dotcloud/docker.git
cd docker
vagrant up

[image: run docker]
Congratulations! You are running an Ubuntu server with docker installed on it. You do not see it though, because it is running in the background.

Log onto your Ubuntu server

Let’s log into your Ubuntu server now. To do so you have two choices:

	Use Vagrant on Windows command prompt OR

	Use SSH

Using Vagrant on Windows Command Prompt

Run the following command

vagrant ssh

You may see an error message starting with “ssh executable not found”. In this case it means that you do not have SSH in your PATH. If you do not have SSH in your PATH you can set it up with the “set” command. For instance, if your ssh.exe is in the folder named “C:Program Files (x86)Gitbin”, then you can run the following command:

set PATH=%PATH%;C:\Program Files (x86)\Git\bin

[image: run docker]

Using SSH

First step is to get the IP and port of your Ubuntu server. Simply run:

vagrant ssh-config

You should see an output with HostName and Port information. In this example, HostName is 127.0.0.1 and port is 2222. And the User is “vagrant”. The password is not shown, but it is also “vagrant”.

[image: run docker]
You can now use this information for connecting via SSH to your server. To do so you can:

	Use putty.exe OR

	Use SSH from a terminal

Use putty.exe

You can download putty.exe from this page http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
Launch putty.exe and simply enter the information you got from last step.

[image: run docker]
Open, and enter user = vagrant and password = vagrant.

[image: run docker]

SSH from a terminal

You can also run this command on your favorite terminal (windows prompt, cygwin, git-bash, …). Make sure to adapt the IP and port from what you got from the vagrant ssh-config command.

ssh vagrant@127.0.0.1 –p 2222

Enter user = vagrant and password = vagrant.

[image: run docker]
Congratulations, you are now logged onto your Ubuntu Server, running on top of your Windows machine !

Running Docker

First you have to be root in order to run docker. Simply run the following command:

sudo su

You are now ready for the docker’s “hello world” example. Run

docker run busybox echo hello world

[image: run docker]
All done!

Now you can continue with the Hello World example.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Installation

Amazon EC2

Please note this is a community contributed installation path. The only ‘official’ installation is using the
Ubuntu Linux installation path. This version may sometimes be out of date.

Installation

Docker can now be installed on Amazon EC2 with a single vagrant command. Vagrant 1.1 or higher is required.

	Install vagrant from http://www.vagrantup.com/ (or use your package manager)

	Install the vagrant aws plugin

vagrant plugin install vagrant-aws

	Get the docker sources, this will give you the latest Vagrantfile.

git clone https://github.com/dotcloud/docker.git

	Check your AWS environment.

Create a keypair specifically for EC2, give it a name and save it to your disk. I usually store these in my ~/.ssh/ folder.

Check that your default security group has an inbound rule to accept SSH (port 22) connections.

	Inform Vagrant of your settings

Vagrant will read your access credentials from your environment, so we need to set them there first. Make sure
you have everything on amazon aws setup so you can (manually) deploy a new image to EC2.

export AWS_ACCESS_KEY_ID=xxx
export AWS_SECRET_ACCESS_KEY=xxx
export AWS_KEYPAIR_NAME=xxx
export AWS_SSH_PRIVKEY=xxx

The environment variables are:

	AWS_ACCESS_KEY_ID - The API key used to make requests to AWS

	AWS_SECRET_ACCESS_KEY - The secret key to make AWS API requests

	AWS_KEYPAIR_NAME - The name of the keypair used for this EC2 instance

	AWS_SSH_PRIVKEY - The path to the private key for the named keypair, for example ~/.ssh/docker.pem

You can check if they are set correctly by doing something like

echo $AWS_ACCESS_KEY_ID

	Do the magic!

vagrant up --provider=aws

If it stalls indefinitely on [default] Waiting for SSH to become available..., Double check your default security
zone on AWS includes rights to SSH (port 22) to your container.

If you have an advanced AWS setup, you might want to have a look at the https://github.com/mitchellh/vagrant-aws

	Connect to your machine

vagrant ssh

	Your first command

Now you are in the VM, run docker

docker

Continue with the Hello World example.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Installation

Upgrading

These instructions are for upgrading your Docker binary for when you had a custom (non package manager) installation.
If you istalled docker using apt-get, use that to upgrade.

Get the latest docker binary:

wget http://get.docker.io/builds/$(uname -s)/$(uname -m)/docker-master.tgz

Unpack it to your current dir

tar -xf docker-master.tgz

Stop your current daemon. How you stop your daemon depends on how you started it.

	If you started the daemon manually (sudo docker -d), you can just kill the process: killall docker

	If the process was started using upstart (the ubuntu startup daemon), you may need to use that to stop it

Start docker in daemon mode (-d) and disconnect (&) starting ./docker will start the version in your current dir rather
than the one in your PATH.

Now start the daemon

sudo ./docker -d &

Alternatively you can replace the docker binary in /usr/local/bin

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

Examples

Contents:

	Running The Examples

	Hello World

	Hello World Daemon

	Building a python web app

	Create a redis service

	Create an ssh daemon service

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Examples

Running The Examples

All the examples assume your machine is running the docker daemon. To run the docker daemon in the background, simply type:

sudo docker -d &

Now you can run docker in client mode: all commands will be forwarded to the docker daemon, so the client
can run from any account.

now you can run docker commands from any account.
docker help

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Examples

Hello World

Note

This example assumes you have Docker running in daemon mode. For more information please see Running The Examples

This is the most basic example available for using Docker.

Download the base container

Download a base image
docker pull base

The base image is a minimal ubuntu based container, alternatively you can select busybox, a bare
minimal linux system. The images are retrieved from the docker repository.

#run a simple echo command, that will echo hello world back to the console over standard out.
docker run base /bin/echo hello world

Explanation:

	“docker run” run a command in a new container

	“base” is the image we want to run the command inside of.

	“/bin/echo” is the command we want to run in the container

	“hello world” is the input for the echo command

Video:

See the example in action

Continue to the Hello World Daemon example.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Examples

Hello World Daemon

Note

This example assumes you have Docker running in daemon mode. For more information please see Running The Examples

The most boring daemon ever written.

This example assumes you have Docker installed and with the base image already imported docker pull base.
We will use the base image to run a simple hello world daemon that will just print hello world to standard
out every second. It will continue to do this until we stop it.

Steps:

CONTAINER_ID=$(docker run -d base /bin/sh -c "while true; do echo hello world; sleep 1; done")

We are going to run a simple hello world daemon in a new container made from the base image.

	“docker run -d “ run a command in a new container. We pass “-d” so it runs as a daemon.

	“base” is the image we want to run the command inside of.

	“/bin/sh -c” is the command we want to run in the container

	“while true; do echo hello world; sleep 1; done” is the mini script we want to run, that will just print hello world once a second until we stop it.

	$CONTAINER_ID the output of the run command will return a container id, we can use in future commands to see what is going on with this process.

docker logs $CONTAINER_ID

Check the logs make sure it is working correctly.

	“docker logs” This will return the logs for a container

	$CONTAINER_ID The Id of the container we want the logs for.

docker attach $CONTAINER_ID

Attach to the container to see the results in realtime.

	“docker attach” This will allow us to attach to a background process to see what is going on.

	$CONTAINER_ID The Id of the container we want to attach too.

docker ps

Check the process list to make sure it is running.

	“docker ps” this shows all running process managed by docker

docker stop $CONTAINER_ID

Stop the container, since we don’t need it anymore.

	“docker stop” This stops a container

	$CONTAINER_ID The Id of the container we want to stop.

docker ps

Make sure it is really stopped.

Video:

See the example in action

Continue to the Building a python web app example.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Examples

Building a python web app

Note

This example assumes you have Docker running in daemon mode. For more information please see Running The Examples

The goal of this example is to show you how you can author your own docker images using a parent image, making changes to it, and then saving the results as a new image. We will do that by making a simple hello flask web application image.

Steps:

docker pull shykes/pybuilder

We are downloading the “shykes/pybuilder” docker image

URL=http://github.com/shykes/helloflask/archive/master.tar.gz

We set a URL variable that points to a tarball of a simple helloflask web app

BUILD_JOB=$(docker run -d -t shykes/pybuilder:latest /usr/local/bin/buildapp $URL)

Inside of the “shykes/pybuilder” image there is a command called buildapp, we are running that command and passing the $URL variable from step 2 to it, and running the whole thing inside of a new container. BUILD_JOB will be set with the new container_id.

docker attach $BUILD_JOB
[...]

We attach to the new container to see what is going on. Ctrl-C to disconnect

BUILD_IMG=$(docker commit $BUILD_JOB _/builds/github.com/hykes/helloflask/master)

Save the changed we just made in the container to a new image called “_/builds/github.com/hykes/helloflask/master” and save the image id in the BUILD_IMG variable name.

WEB_WORKER=$(docker run -d -p 5000 $BUILD_IMG /usr/local/bin/runapp)

	“docker run -d “ run a command in a new container. We pass “-d” so it runs as a daemon.

	“-p 5000” the web app is going to listen on this port, so it must be mapped from the container to the host system.

	“$BUILD_IMG” is the image we want to run the command inside of.

	/usr/local/bin/runapp is the command which starts the web app.

Use the new image we just created and create a new container with network port 5000, and return the container id and store in the WEB_WORKER variable.

docker logs $WEB_WORKER
 * Running on http://0.0.0.0:5000/

view the logs for the new container using the WEB_WORKER variable, and if everything worked as planned you should see the line “Running on http://0.0.0.0:5000/” in the log output.

WEB_PORT=$(docker port $WEB_WORKER 5000)

lookup the public-facing port which is NAT-ed store the private port used by the container and store it inside of the WEB_PORT variable.

curl http://`hostname`:$WEB_PORT
 Hello world!

access the web app using curl. If everything worked as planned you should see the line “Hello world!” inside of your console.

Video:

See the example in action

Continue to Create an ssh daemon service.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Examples

Create a redis service

Note

This example assumes you have Docker running in daemon mode. For more information please see Running The Examples

Very simple, no frills, redis service.

Open a docker container

docker run -i -t base /bin/bash

Building your image

Update your docker container, install the redis server. Once installed, exit out of docker.

apt-get update
apt-get install redis-server
exit

Snapshot the installation

docker ps -a # grab the container id (this will be the last one in the list)
docker commit <container_id> <your username>/redis

Run the service

Running the service with -d runs the container in detached mode, leaving the
container running in the background. Use your snapshot.

docker run -d -p 6379 <your username>/redis /usr/bin/redis-server

Test 1

Connect to the container with the redis-cli.

docker ps # grab the new container id
docker inspect <container_id> # grab the ipaddress of the container
redis-cli -h <ipaddress> -p 6379
redis 10.0.3.32:6379> set docker awesome
OK
redis 10.0.3.32:6379> get docker
"awesome"
redis 10.0.3.32:6379> exit

Test 2

Connect to the host os with the redis-cli.

docker ps # grab the new container id
docker port <container_id> 6379 # grab the external port
ifconfig # grab the host ip address
redis-cli -h <host ipaddress> -p <external port>
redis 192.168.0.1:49153> set docker awesome
OK
redis 192.168.0.1:49153> get docker
"awesome"
redis 192.168.0.1:49153> exit

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Examples

Create an ssh daemon service

Note

This example assumes you have Docker running in daemon mode. For more information please see Running The Examples

Video:

I’ve create a little screencast to show how to create a sshd service and connect to it. It is something like 11
minutes and not entirely smooth, but gives you a good idea.

You can also get this sshd container by using

docker pull dhrp/sshd

The password is ‘screencast’

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

Contributing

	Contributing to Docker

	Setting up a dev environment

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Contributing

Contributing to Docker

Want to hack on Docker? Awesome! There are instructions to get you
started on the website: http://docker.io/gettingstarted.html

They are probably not perfect, please let us know if anything feels
wrong or incomplete.

Contribution guidelines

Pull requests are always welcome

We are always thrilled to receive pull requests, and do our best to
process them as fast as possible. Not sure if that typo is worth a pull
request? Do it! We will appreciate it.

If your pull request is not accepted on the first try, don’t be
discouraged! If there’s a problem with the implementation, hopefully you
received feedback on what to improve.

We’re trying very hard to keep Docker lean and focused. We don’t want it
to do everything for everybody. This means that we might decide against
incorporating a new feature. However, there might be a way to implement
that feature on top of docker.

Discuss your design on the mailing list

We recommend discussing your plans on the mailing
list [https://groups.google.com/forum/?fromgroups#!forum/docker-club]
before starting to code - especially for more ambitious contributions.
This gives other contributors a chance to point you in the right
direction, give feedback on your design, and maybe point out if someone
else is working on the same thing.

Create issues...

Any significant improvement should be documented as a github
issue [https://github.com/dotcloud/docker/issues] before anybody
starts working on it.

...but check for existing issues first!

Please take a moment to check that an issue doesn’t already exist
documenting your bug report or improvement proposal. If it does, it
never hurts to add a quick “+1” or “I have this problem too”. This will
help prioritize the most common problems and requests.

Conventions

Fork the repo and make changes on your fork in a feature branch:

	If it’s a bugfix branch, name it XXX-something where XXX is the number of the
issue

	If it’s a feature branch, create an enhancement issue to announce your
intentions, and name it XXX-something where XXX is the number of the issue.

Submit unit tests for your changes. Go has a great test framework built in; use
it! Take a look at existing tests for inspiration. Run the full test suite on
your branch before submitting a pull request.

Make sure you include relevant updates or additions to documentation when
creating or modifying features.

Write clean code. Universally formatted code promotes ease of writing, reading,
and maintenance. Always run go fmt before committing your changes. Most
editors have plugins that do this automatically, and there’s also a git
pre-commit hook:

curl -o .git/hooks/pre-commit https://raw.github.com/edsrzf/gofmt-git-hook/master/fmt-check && chmod +x .git/hooks/pre-commit

Pull requests descriptions should be as clear as possible and include a
reference to all the issues that they address.

Code review comments may be added to your pull request. Discuss, then make the
suggested modifications and push additional commits to your feature branch. Be
sure to post a comment after pushing. The new commits will show up in the pull
request automatically, but the reviewers will not be notified unless you
comment.

Before the pull request is merged, make sure that you squash your commits into
logical units of work using git rebase -i and git push -f. After every
commit the test suite should be passing. Include documentation changes in the
same commit so that a revert would remove all traces of the feature or fix.

Commits that fix or close an issue should include a reference like Closes #XXX
or Fixes #XXX, which will automatically close the issue when merged.

Add your name to the AUTHORS file, but make sure the list is sorted and your
name and email address match your git configuration. The AUTHORS file is
regenerated occasionally from the git commit history, so a mismatch may result
in your changes being overwritten.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Contributing

Setting up a dev environment

Instructions that have been verified to work on Ubuntu 12.10,

sudo apt-get -y install lxc wget bsdtar curl golang git

export GOPATH=~/go/
export PATH=$GOPATH/bin:$PATH

mkdir -p $GOPATH/src/github.com/dotcloud
cd $GOPATH/src/github.com/dotcloud
git clone git@github.com:dotcloud/docker.git
cd docker

go get -v github.com/dotcloud/docker/...
go install -v github.com/dotcloud/docker/...

Then run the docker daemon,

sudo $GOPATH/bin/docker -d

Run the go install command (above) to recompile docker.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

Commands

Contents:

	The basics
	Starting Docker

	Running an interactive shell

	Starting a long-running worker process

	Listing all running containers

	Expose a service on a TCP port

	Committing (saving) an image

	Working with the repository
	Connecting to the repository

	Committing a container to a named image

	Pushing a container to the repository

	Command Line Interface
	Docker Usage

	Available Commands

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

The basics

Starting Docker

If you have used one of the quick install paths’, Docker may have been installed with upstart, Ubuntu’s
system for starting processes at boot time. You should be able to run docker help and get output.

If you get docker: command not found or something like /var/lib/docker/repositories: permission denied
you will need to specify the path to it and manually start it.

Run docker in daemon mode
sudo <path to>/docker -d &

Running an interactive shell

Download a base image
docker pull base

Run an interactive shell in the base image,
allocate a tty, attach stdin and stdout
docker run -i -t base /bin/bash

Starting a long-running worker process

Start a very useful long-running process
JOB=$(docker run -d base /bin/sh -c "while true; do echo Hello world; sleep 1; done")

Collect the output of the job so far
docker logs $JOB

Kill the job
docker kill $JOB

Listing all running containers

docker ps

Expose a service on a TCP port

Expose port 4444 of this container, and tell netcat to listen on it
JOB=$(docker run -d -p 4444 base /bin/nc -l -p 4444)

Which public port is NATed to my container?
PORT=$(docker port $JOB 4444)

Connect to the public port via the host's public address
Please note that because of how routing works connecting to localhost or 127.0.0.1 $PORT will not work.
IP=$(ifconfig eth0 | perl -n -e 'if (m/inet addr:([\d\.]+)/g) { print $1 }')
echo hello world | nc $IP $PORT

Verify that the network connection worked
echo "Daemon received: $(docker logs $JOB)"

Committing (saving) an image

Save your containers state to a container image, so the state can be re-used.

When you commit your container only the differences between the image the container was created from
and the current state of the container will be stored (as a diff). See which images you already have
using docker images

Commit your container to a new named image
docker commit <container_id> <some_name>

List your containers
docker images

You now have a image state from which you can create new instances.

Read more about Working with the repository or continue to the complete Command Line Interface

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

Working with the repository

Connecting to the repository

You create a user on the central docker repository by running

docker login

If your username does not exist it will prompt you to also enter a password and your e-mail address. It will then
automatically log you in.

Committing a container to a named image

In order to commit to the repository it is required to have committed your container to an image with your namespace.

for example docker commit $CONTAINER_ID dhrp/kickassapp
docker commit <container_id> <your username>/<some_name>

Pushing a container to the repository

In order to push an image to the repository you need to have committed your container to a named image (see above)

Now you can commit this image to the repository

for example docker push dhrp/kickassapp
docker push <image-name>

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

Command Line Interface

Docker Usage

To list available commands, either run docker with no parameters or execute
docker help:

$ docker
 Usage: docker COMMAND [arg...]

 A self-sufficient runtime for linux containers.

 ...

Available Commands

	attach – Attach to a running container

	build – Build a container from Dockerfile via stdin

	commit – Create a new image from a container’s changes

	diff – Inspect changes on a container’s filesystem

	export – Stream the contents of a container as a tar archive

	history – Show the history of an image

	images – List images

	import – Create a new filesystem image from the contents of a tarball

	info – Display system-wide information

	inspect – Return low-level information on a container

	kill – Kill a running container

	login – Register or Login to the docker registry server

	logs – Fetch the logs of a container

	port – Lookup the public-facing port which is NAT-ed to PRIVATE_PORT

	ps – List containers

	pull – Pull an image or a repository from the docker registry server

	push – Push an image or a repository to the docker registry server

	restart – Restart a running container

	rm – Remove a container

	rmi – Remove an image

	run – Run a command in a new container

	start – Start a stopped container

	stop – Stop a running container

	tag – Tag an image into a repository

	version – Show the docker version information

	wait – Block until a container stops, then print its exit code

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

attach – Attach to a running container

Usage: docker attach CONTAINER

Attach to a running container

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

build – Build a container from Dockerfile via stdin

Usage: docker build -
Example: cat Dockerfile | docker build -
Build a new image from the Dockerfile passed via stdin

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

commit – Create a new image from a container’s changes

Usage: docker commit [OPTIONS] CONTAINER [REPOSITORY [TAG]]

Create a new image from a container's changes

 -m="": Commit message

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

diff – Inspect changes on a container’s filesystem

Usage: docker diff CONTAINER [OPTIONS]

Inspect changes on a container's filesystem

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

export – Stream the contents of a container as a tar archive

Usage: docker export CONTAINER

Export the contents of a filesystem as a tar archive

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

history – Show the history of an image

Usage: docker history [OPTIONS] IMAGE

Show the history of an image

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

images – List images

Usage: docker images [OPTIONS] [NAME]

List images

 -a=false: show all images
 -q=false: only show numeric IDs

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

import – Create a new filesystem image from the contents of a tarball

Usage: docker import [OPTIONS] URL|- [REPOSITORY [TAG]]

Create a new filesystem image from the contents of a tarball

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

info – Display system-wide information

Usage: docker info

Display system-wide information.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

inspect – Return low-level information on a container

Usage: docker inspect [OPTIONS] CONTAINER

Return low-level information on a container

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

kill – Kill a running container

Usage: docker kill [OPTIONS] CONTAINER [CONTAINER...]

Kill a running container

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

login – Register or Login to the docker registry server

Usage: docker login

Register or Login to the docker registry server

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

logs – Fetch the logs of a container

Usage: docker logs [OPTIONS] CONTAINER

Fetch the logs of a container

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

port – Lookup the public-facing port which is NAT-ed to PRIVATE_PORT

Usage: docker port [OPTIONS] CONTAINER PRIVATE_PORT

Lookup the public-facing port which is NAT-ed to PRIVATE_PORT

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

ps – List containers

Usage: docker ps [OPTIONS]

List containers

 -a=false: Show all containers. Only running containers are shown by default.
 -notrunc=false: Don't truncate output
 -q=false: Only display numeric IDs

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

pull – Pull an image or a repository from the docker registry server

Usage: docker pull NAME

Pull an image or a repository from the registry

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

push – Push an image or a repository to the docker registry server

Usage: docker push NAME

Push an image or a repository to the registry

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

restart – Restart a running container

Usage: docker restart [OPTIONS] NAME

Restart a running container

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

rm – Remove a container

Usage: docker rm [OPTIONS] CONTAINER

Remove a container

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

rmi – Remove an image

Usage: docker rmimage [OPTIONS] IMAGE

Remove an image

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

run – Run a command in a new container

Usage: docker run [OPTIONS] IMAGE COMMAND [ARG...]

Run a command in a new container

 -a=map[]: Attach to stdin, stdout or stderr.
 -d=false: Detached mode: leave the container running in the background
 -e=[]: Set environment variables
 -h="": Container host name
 -i=false: Keep stdin open even if not attached
 -m=0: Memory limit (in bytes)
 -p=[]: Map a network port to the container
 -t=false: Allocate a pseudo-tty
 -u="": Username or UID

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

start – Start a stopped container

Usage: docker start [OPTIONS] NAME

Start a stopped container

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

stop – Stop a running container

Usage: docker stop [OPTIONS] NAME

Stop a running container

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

tag – Tag an image into a repository

Usage: docker tag [OPTIONS] IMAGE REPOSITORY [TAG]

Tag an image into a repository

 -f=false: Force

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

version – Show the docker version information

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Commands

 	Command Line Interface

wait – Block until a container stops, then print its exit code

Usage: docker wait [OPTIONS] NAME

Block until a container stops, then print its exit code.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

Builder

Contents:

	Docker Builder
	1. Format

	2. Instructions

	3. Dockerfile Examples

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Docker 0 documentation

 	Builder

Docker Builder

Table of Contents

	Docker Builder
	1. Format

	2. Instructions
	2.1 FROM

	2.2 RUN

	2.3 INSERT

	3. Dockerfile Examples

1. Format

The Docker builder format is quite simple:

instruction arguments

The first instruction must be FROM

All instruction are to be placed in a file named Dockerfile

In order to place comments within a Dockerfile, simply prefix the line with “#“

2. Instructions

Docker builder comes with a set of instructions:

	FROM: Set from what image to build

	RUN: Execute a command

	INSERT: Insert a remote file (http) into the image

2.1 FROM

FROM <image>

The FROM instruction must be the first one in order for Builder to know from where to run commands.

FROM can also be used in order to build multiple images within a single Dockerfile

2.2 RUN

RUN <command>

The RUN instruction is the main one, it allows you to execute any commands on the FROM image and to save the results.
You can use as many RUN as you want within a Dockerfile, the commands will be executed on the result of the previous command.

2.3 INSERT

INSERT <file url> <path>

The INSERT instruction will download the file at the given url and place it within the image at the given path.

Note

The path must include the file name.

3. Dockerfile Examples

Nginx
#
VERSION 0.0.1
DOCKER-VERSION 0.2

from ubuntu

make sure the package repository is up to date
run echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/sources.list
run apt-get update

run apt-get install -y inotify-tools nginx apache openssh-server
insert https://raw.github.com/creack/docker-vps/master/nginx-wrapper.sh /usr/sbin/nginx-wrapper

Firefox over VNC
#
VERSION 0.3
DOCKER-VERSION 0.2

from ubuntu
make sure the package repository is up to date
run echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/sources.list
run apt-get update

Install vnc, xvfb in order to create a 'fake' display and firefox
run apt-get install -y x11vnc xvfb firefox
run mkdir /.vnc
Setup a password
run x11vnc -storepasswd 1234 ~/.vnc/passwd
Autostart firefox (might not be the best way to do it, but it does the trick)
run bash -c 'echo "firefox" >> /.bashrc'

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Docker 0 documentation

FAQ

Most frequently asked questions.

	How much does Docker cost?

Docker is 100% free, it is open source, so you can use it without paying.

	What open source license are you using?

We are using the Apache License Version 2.0, see it here: https://github.com/dotcloud/docker/blob/master/LICENSE

	Does Docker run on Mac OS X or Windows?

Not at this time, Docker currently only runs on Linux, but you can use VirtualBox to run Docker in a virtual machine on your box, and get the best of both worlds. Check out the MacOSX and Windows intallation guides.

	How do containers compare to virtual machines?

They are complementary. VMs are best used to allocate chunks of hardware resources. Containers operate at the process level, which makes them very lightweight and perfect as a unit of software delivery.

	Can I help by adding some questions and answers?

Definitely! You can fork the repo [http://www.github.com/dotcloud/docker] and edit the documentation sources.

	Where can I find more answers?

You can find more answers on:

	IRC: docker on freenode

	Github [http://www.github.com/dotcloud/docker]

	Ask questions on Stackoverflow [http://stackoverflow.com/search?q=docker]

	Join the conversation on Twitter [http://twitter.com/getdocker]

Looking for something else to read? Checkout the Hello World example.

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Docker 0 documentation

Index

 Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

 concepts/containers.html

 Navigation

 		
 index

 		Docker 0 documentation »

Introduction

Docker - The Linux container runtime

Docker complements LXC with a high-level API which operates at the process level. It runs unix processes with strong guarantees of isolation and repeatability across servers.

Docker is a great building block for automating distributed systems: large-scale web deployments, database clusters, continuous deployment systems, private PaaS, service-oriented architectures, etc.

		Heterogeneous payloads Any combination of binaries, libraries, configuration files, scripts, virtualenvs, jars, gems, tarballs, you name it. No more juggling between domain-specific tools. Docker can deploy and run them all.

		Any server Docker can run on any x64 machine with a modern linux kernel - whether it’s a laptop, a bare metal server or a VM. This makes it perfect for multi-cloud deployments.

		Isolation docker isolates processes from each other and from the underlying host, using lightweight containers.

		Repeatability Because containers are isolated in their own filesystem, they behave the same regardless of where, when, and alongside what they run.

What is a Standard Container?

Docker defines a unit of software delivery called a Standard Container. The goal of a Standard Container is to encapsulate a software component and all its dependencies in
a format that is self-describing and portable, so that any compliant runtime can run it without extra dependency, regardless of the underlying machine and the contents of the container.

The spec for Standard Containers is currently work in progress, but it is very straightforward. It mostly defines 1) an image format, 2) a set of standard operations, and 3) an execution environment.

A great analogy for this is the shipping container. Just like Standard Containers are a fundamental unit of software delivery, shipping containers (http://bricks.argz.com/ins/7823-1/12) are a fundamental unit of physical delivery.

Standard operations

Just like shipping containers, Standard Containers define a set of STANDARD OPERATIONS. Shipping containers can be lifted, stacked, locked, loaded, unloaded and labelled. Similarly, standard containers can be started, stopped, copied, snapshotted, downloaded, uploaded and tagged.

Content-agnostic

Just like shipping containers, Standard Containers are CONTENT-AGNOSTIC: all standard operations have the same effect regardless of the contents. A shipping container will be stacked in exactly the same way whether it contains Vietnamese powder coffee or spare Maserati parts. Similarly, Standard Containers are started or uploaded in the same way whether they contain a postgres database, a php application with its dependencies and application server, or Java build artifacts.

Infrastructure-agnostic

Both types of containers are INFRASTRUCTURE-AGNOSTIC: they can be transported to thousands of facilities around the world, and manipulated by a wide variety of equipment. A shipping container can be packed in a factory in Ukraine, transported by truck to the nearest routing center, stacked onto a train, loaded into a German boat by an Australian-built crane, stored in a warehouse at a US facility, etc. Similarly, a standard container can be bundled on my laptop, uploaded to S3, downloaded, run and snapshotted by a build server at Equinix in Virginia, uploaded to 10 staging servers in a home-made Openstack cluster, then sent to 30 production instances across 3 EC2 regions.

Designed for automation

Because they offer the same standard operations regardless of content and infrastructure, Standard Containers, just like their physical counterpart, are extremely well-suited for automation. In fact, you could say automation is their secret weapon.

Many things that once required time-consuming and error-prone human effort can now be programmed. Before shipping containers, a bag of powder coffee was hauled, dragged, dropped, rolled and stacked by 10 different people in 10 different locations by the time it reached its destination. 1 out of 50 disappeared. 1 out of 20 was damaged. The process was slow, inefficient and cost a fortune - and was entirely different depending on the facility and the type of goods.

Similarly, before Standard Containers, by the time a software component ran in production, it had been individually built, configured, bundled, documented, patched, vendored, templated, tweaked and instrumented by 10 different people on 10 different computers. Builds failed, libraries conflicted, mirrors crashed, post-it notes were lost, logs were misplaced, cluster updates were half-broken. The process was slow, inefficient and cost a fortune - and was entirely different depending on the language and infrastructure provider.

Industrial-grade delivery

There are 17 million shipping containers in existence, packed with every physical good imaginable. Every single one of them can be loaded on the same boats, by the same cranes, in the same facilities, and sent anywhere in the World with incredible efficiency. It is embarrassing to think that a 30 ton shipment of coffee can safely travel half-way across the World in less time than it takes a software team to deliver its code from one datacenter to another sitting 10 miles away.

With Standard Containers we can put an end to that embarrassment, by making INDUSTRIAL-GRADE DELIVERY of software a reality.

Standard Container Specification

(TODO)

Image format

Standard operations

		Copy

		Run

		Stop

		Wait

		Commit

		Attach standard streams

		List filesystem changes

		...

Execution environment

Root filesystem

Environment variables

Process arguments

Networking

Process namespacing

Resource limits

Process monitoring

Logging

Signals

Pseudo-terminal allocation

Security

 © Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/down.png

_static/lego_docker.jpg
Instructions For Lego Container Crane Depot [7823] Copyright of the LEGO Group

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-close.png

search.html

 Navigation

 		
 index

 		Docker 0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

_static/up.png

_images/ssh-config.gif
C:\Users\jundocker>vagrant ssh-config
Host default
HostName 127.0.0.1
User vagrant
Port 2222
UsexknounHostsFile /deu/null
StrictHostKeyChecking no
PassuordAuthentication no
IdentityFile “C:/Users/ju/.vagrant.d/insecure_private_key"
IdentitiesOnly ves
LogLevel FATAL

[\Users jundocker>

_images/cygwin.gif
juesoyeux-anni ~
s ssh’vagrante127.0.0.1 -p 2222

JThe authenticity of host '[127.0.0.11:2222 ([127.0.0.1]:2222)" can't be establis|
hed.

ECDSA key Fingerprint is 65:1c: 6e:ac:71:0d:d0:52:64:5a; e.

Jare you sure you want o continue connecting (ves/no)? yes

Jwarning: Permanently added '[127.0.0.1]:2222' (ECDSA) to the Tist of known hosts|

Vagrante127.0.0.1's_password:
JweTcome to Ubuntu 12.10 (GNU/Linux 3.5.0-25-generic x86.64)

= Docunentation: https://help. ubuntu. con/

Last Togin: Mon Mar 25 15:02:07 2013 from 10.0.2.2
-bash: $'\r": command not found

[-bash: $*\r': command not found

-bash: /home/vagrant/.profile: line 28: syntax error: unexpected end of file
[vagrant@vagrant-ubunti-12:~5 |

_images/run_02_.gif
C:\Users\judgit clone https://github.con/dotcloud/docker.git
[Cloning into ’docker’ .
Usernane for *https:/rgithub.con’: jharbier

Counting ohjects: 2234, done.
Compressing ohjects: 108z <890/890>. done.

Total 2234 (delta 1255). reused 2164 (delta 1192)
[Receiving objects: 108x (2234/3234>, 2.83 MiB | 488 KiB/s. done.
Resolving deltas: 108 <1255/1255). done.

[C:\Users\juded docker

C:\Users\jundockerdvagrant up

Bringing hachipe ’default’ up with ’virtualbox’ provider.

(dePauitn Box " quantalod 3. 50725 uas not Found Fotching hox from specified UR
the provider ’virtualbox’. Note that if the URL does not have

2 box For this provider. you should interrupt Uagrant now and add

fthe box yourself. Otheruise Uagrant will attempt to download the

Fuil hox priow 5 discovering this errox.

Y quantaléd_3.5.8-25" with provider ’virtualbox’
[default] Importing hase hox ’quantaled 3.5.0-25"
[default] Matching MAC address For NAT netuworking.
[default] Setting the name of the UM...
[default] Clearing any previously set foruarded ports...
[default] Fixed port collision For 22 => 2222. Now on port 2208.
[default] Creating shared folders metadata. ..
[default] Clearing any previously set network interfaces
[default] Preparing netuork interfaces hased on configuration...
[default] Forvarding ports...
[default] —— 22 => 2208 (adapter 1>
[default] Booting UM...
[default] Uaiting for UM to hoot. This can take a few minutes.
[default] UM hooted and ready for use!
[default] Configuring and enabling netuork interfaces...
[default] Hounting shared folders...

— Jvagrant
- ~/docker
~ /tmp/vagrant-puppet/manifests
~ 7tmp/vagrant-puppet/modules-0
[default] Running provisioner: UagrantPlugins
[Running Puppet with quantal6d.pp...
[stdin: is not a tty
<[8536mnotice: /Stagelnainl//Node [default 1/Execapt_updatel/returns: executed sul
ccessfullys [On
<[0;36mnotice: /Stagelnainl/Docker/Package [pkg—configl/ensure: ensure changed
urged” to ’present’ <[dn
(0336mnoc ico: /Stago Inain1/Docker Package [1ibsqlited-dov 1 ensur
present’<[On
/Stage mainl/Docker/Exec [fotch—docker1/veturns: executed successf|

+:Puppet...

)

: ensure changel

<183 36mnotice: /Stagelnainl/Docker/Notifyldocker_ url
a5/ Linuwx/x86_64/docker—naster.tyz1/message: docker_url
i1ds/Linux/x86_64/docker—master. tgzen

<10;36mnot ice: /Stagelnainl/Docker/Notifyldocker_url
ds /Linuwx/x86_64/docker—master.tyz I/nessage: def ined
et p://get .dockes . io/builds/Linux/x86_64/docker—naster.tgz’ <[On
< [0:36mnotice: /Stagelnainl/Docker/Execcopy-docker-binl/returns: executed succel
ss£ullye [on

<[0;36mnotice: /Stage[nainl/Docker/File[/etc/init/dockerd conf 1/content: contentl
changed ’(nd5>64hBbaB7c961722ae4b28a46dbBda283’ to ’ nd557hch3dc48477d057c580¢ af
¢538d¢82c8° < [on

[<[8:36mnotice: /Stagelnainl/Docker/Serviceldockerd]l/ensure: ensure changed ’stop)
[ped’ to ’running’ < L0n

10 36motico: /Stage Inain 1/Virtualbox Filel/usr/localbin/dockerd lensur
<[8:36mnotice: /Stagelnainl Uirtualhox/Execlvbox-add]l/returns: executed successt]
ullye[an

<160;36mnotice: /Stagelmainl/Docker/Userlvagrant1/connent
to ‘Uagrant User’<[dn

<[8;36mnotice: /Stagelnainl/Docker/File[/hone/vagrant/.profilel/content: contentl
changed ' (nd5Yech6d3479ac3823F1da?¢314d871989b° to ’ (nd5)FB30dde132a826243cF hial
94bd5c4753” < [on

<[8;36mnotice: /Stagelnainl/Docker/File[/hone /vagrant/.profilel/group: group chal
nged ’vagrant’ to ’ubuntu’<[dn

[<[0336mmot fco: /Seageinain1/Uirtualbox Filel /hone vagrant/docker-naster1 ensure
[<[8;36mnotice: Finished catalog run in 143.49 secondsc[Bn

http://get.docker. io buill
htep://get . docker. io/huf

: conment changed ’...

[C:\Users\jundocker>

_images/run_04.gif
JragrantBuagrant-ubuntu-12:"3 sudo su
00t Buagrant-ubuntu-12:/hone /vagranth docker run —a busyhox echo hello world
2013,/03/22 20:47:01 docker run -a busybox echo hello world

fhello world

brootBuagrant-ubuntu-12: /home /vagrantit

_images/putty.gif
Category:
o e T
BT Lﬂg‘gm [~ Specify the destination you want to connect to-
o Host Name for IP address) Port

e

& Window Raw (" Telnet © Rlogin & SSH " Seral
Appearance
oarce | —
Selection I

=l Connection i
Data Save
= |
o Close window on ext:

 Aways (" Never (% Onlyon clean exit

_images/_02.gif
[Microsoft Yindous [Uersion 6.1.76011
[Copyright (c> 2889 Microsoft Corporation. A1l rights reserved.

c:\Users\ju>

_images/_01.gif
59 see more results

C—
andl €3 shutdown |»

_images/putty_2.gif
vagrant
vagranc@127.0.0.1's passwora:
Jfelcome to Ubuntu 12.10 (GNU/Li:

* Documentation: https://help.

Last 1ogin: Mon Mar 25 12:14:01

[-pasn: $'\r': command not founa

[-pasn: $'\r': command not founa

[-pasn: /nome/vagrant/.profile: line 28: syntax error: unexpected end of file
Jvagrant@vagrant—ubunt;

static_files/README.html

 Navigation

 		
 index

 		Docker 0 documentation »

Static files dir

Files you put in /sources/static_files/ will be copied to the web visible /_static/

Be careful not to override pre-existing static files from the template.

Generally, layout related files should go in the /theme directory.

If you want to add images to your particular documentation page. Just put them next to
your .rst source file and reference them relatively.

 © Copyright 2013, Team Docker.
 Created using Sphinx 1.3.1.

_images/run_03.gif
C:\Ugers\jundockerdvagrant ssh
“sch' executable not found in any directories
sSH client installed? Try installing Cyguwin. MinGi or Git, all of which
[contain an SSH client. Ox use the PUITY SSH client with the Following
authentication information shoun helow:

127.0.0.1
2200

Usernane: vagrant

[Private key: C:/Users/jus.vagrant.d/insecure_private_key

C:\Users\jundocker>set PATH=ZPATH3C:\Progran Files (x86)\Git\bin

C:\Users\jundockerdvagrant ssh
iielcone to Ubuntu 12.18 (GNU/Linux 3.5.8-25-generic x86_64

* Documentation: https://help.ubuntu.con/

Last login: Tue Mar 12 10:22:37 2013 fron 10.0.2.2
Fhash: 37\e’: conmand not found

[-hash: §\r": conmand not found

[hash: Zhome/vagrant..prof il

By Sppaifnabl ool

line 28: suntax error: unexvected end of file

